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ABSTRACT
Many international corporations have globally distributed
supply chains exposing their operations to various local risks,
e.g., natural disasters. To facilitate assessment of these risks,
corporations have to identify geographic locations of their
suppliers. However, automated identification of supplier lo-
cations is problematic for areas where geocoding of addresses
is not effective. In this paper, we present a method to infer
location information from user-generated geographic infor-
mation retrieved from Wikimapia and Foursquare. Using a
sample of 139 Indonesian factories supplying large interna-
tional corporations, we compared results from our approach
with locations retrieved from four widely-used geocoding ser-
vices. We found that best results could be achieved using
data from Foursquare, where we retrieved a location within
1km for 73% of the factories. Given that coordinates are
only an input for decision making, we linked retrieved lo-
cations exemplary to semantic data to determine the risk
exposure due to volcanic eruptions for each factory. Both
steps combined present an approach for automated supplier
risk assessment based on social and semantic data.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Types of
Systems—Decision support
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1. INTRODUCTION
Today, many corporations have a significant multinational
footprint as their own operations, customers and suppliers
are internationally distributed. Particularly, a company’s
supplier base is often very large and globally spread [14].

The geographic dispersion enables companies to leverage lo-
cal benefits, e.g. lower cost of labor, but also exposes their
operations to a higher risk of interruptions triggered by the
local environment or society, e.g natural disasters or polit-
ical unrest [25]. Moreover, corporations face an increased
pressure of society and governments to take over responsi-
bility for the local environmental and social impacts caused
by their own or their suppliers’ operations (e.g. [19]).

In order to assess and monitor these local risks, it is im-
portant for a corporation to be able to identify its suppliers
and their accurate geographic locations. However, this re-
quires a reliable translation of supplier factory names and
addresses into geographic coordinates. Problems can exist
for locations in areas which have not yet been well mapped,
which is often the case for e.g. industrial areas in emerg-
ing countries. Especially for companies with hundreds of
suppliers it is a work-intensive task to manually determine
factory-locations in potentially far distant countries.

In contrast to this lack of geographic information from au-
thorized sources, there is an increased interest in using the
web to create, assemble, and disseminate information pro-
vided voluntarily by individuals to websites such as Wikima-
pia or OpenStreetMap[9]. Besides this intentionally con-
tributed information, geographic data is also generated on
social-networks like Twitter or Foursquare through geotag-
ging of messages or directly in status updates, as a side



effect of online communication [20]. Furthermore, the Se-
mantic Web and in particular the Linked Open Data cloud
have emerged as valuable sources of open geographic and
environmental data over the last years [3, 6, 5], representing
a further source of decentralized gathered information.

The goal of this study is to explore whether user-generated
geographic information (UGI) and open semantic data can
be used to increase the knowledge of supplier locations. For
this purpose we infer location information for a sample of
139 supplier factories of multi-national corporations using
two platforms providing UGI (Wikimapia, Foursquare) and
four widely used geocoding services (Google, Bing, Nokia
Here, Nominatim). We evaluated retrieved results, using a
manually developed ground truth data set and found that
UGI increases the number of correctly inferred locations.

Given that the exact supplier location is only a first step in
any risk assessment scenario, this paper further extends the
analysis by linking the obtained location data to open envi-
ronmental data, turning this raw location data into valuable
business knowledge. Considering the regional focus of our
study, and the fact that natural disasters are seen as the
most important trigger for supply chain disruptions [25], we
selected volcanic activity as a relevant risk to illustrate our
approach in a business use case. We used data from two open
sources (OpenStreetMap, DBpedia) to identify the factories
located within a specified range of active volcanoes.

The biggest advantage of UGI as well as of Linked Open
Data is that everyone can contribute and generate informa-
tion, which comes however with the drawback of potentially
low(er) data quality and credibility [8].

In order to address this challenge in our study, we devel-
oped a measure to assess the credibility of user-generated
location records. We apply this measure to be able to auto-
matically retrieve the most credible location for a given fac-
tory. For the risk assessment step, we accordingly employed
a cross-validation mechanism to complement and validate
information retrieved from OpenStreetMap with informa-
tion retrieved from DBpedia in order to retrieve the most
recent, credible information.

Our approach to analyze supplier locations using social and
semantic data enables automated inference of factory loca-
tions, which is beneficial for companies with a high number
of suppliers where the initial identification, the continuous
tracking of changes, and the identification process of possible
future supplier locations are time-intensive. Furthermore,
using open data sources for risk assessment provides new
ways to link supplier locations to various kinds of contex-
tual information, such as the distance to the nearest volcano
or hospital or to local economic indicators like the corrup-
tion index, which can be important inputs in risk assessment
scenarios (see e.g. [21]).

The contributions of this study are as as follows:

• Comparison of location information retrieved for a sam-
ple of Indonesian factories from four widely-used geocod-
ing services and from two platforms providing UGI.

• A method for automated location inference from user-

generated data incorporating a credibility measure.

• A supplier risk assessment approach based on user-
generated and semantic data.

The remainder of this paper is structured as follows: In
Section 2, we discuss related work in both the areas of
User-Generated Information (UGI) and Linked (Open) Data
(LOD). In Section 3, we describe the data sample used for
this study. Subsequently, we present two different ways of
inferring location information for this data set (1) from ex-
isting geocoding services (2) using a novel method to infer
credible location information from UGI, in section 4. In Sec-
tion 5, we evaluate the locations obtained by different meth-
ods using a manually developed ground truth data set. We
present our approach for automated risk assessment based
on LOD in Section 6 and conclude with a discussion of the
results in Section 7.

2. RELATED WORK
Since Internet-based technologies are becoming more and
more pervasive in our lives in terms of ubiquitous comput-
ing and the current trend of sharing experiences and con-
tent enriched with location information, citizens all over
the world are turning into social sensors [9]. This infor-
mation could be used to derive up-to-date and detailed in-
sights into far-distant areas. For instance, Roche et al.
[17] presented the idea of “GeoWeb” in the context of user-
generated and geolocation-based Web content for crisis man-
agement. Geospatial data mining for user-generated Web
content is currently focusing on identifying geographical ref-
erences, which are embedded in the metadata or text of the
provided resources [10].

The need for user-generated spatial data has gained momen-
tum as can be seen in the emergence of geo-mashups. Ac-
cording to [2], in August 2008 a mashup platform1 offered
1740 spatial mashups and in February 2010 the amount had
increased to 2153. Spatial data required to build sophis-
ticated tools can be retrieved through crowdsourcing and
geo-networking [2]. The quality of spatial data is steadily
increasing due to the integration of automatically extracted
geospatial entities, e.g., spatial objects extracted from Wiki-
pedia [23, 24].

LOD is a relatively new concept that emerged within the
Semantic Web. It was first officially defined by Tim Berners-
Lee who published several rules that together define LOD in
2006 [4]. LOD is based on URIs that uniquely define data
items. It uses HTTP for dereferencing and builds on the
Semantic Web standards RDF and SPARQL. Finally, links
between data sets are established through cross-linkages ex-
pressed by using the URIs of the different sets. Altogether, a
vast amount of data is available as Linked Data. In Septem-
ber 2011 the LOD cloud contained 31.6 triples [5]. Eventu-
ally, the data available in the LOD cloud could be provided
by anyone. This leads to potential concerns about the re-
liability, integrity, and usability of the data. Nevertheless,
in domains where knowledge is publicly double-checked and
where more data is better than no data at all, LOD can be

1http://www.programmableweb.com/tag/mapping/
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utilized to enrich existing applications. A particularly inter-
esting resource is the machine readable LOD conversion of
Wikipedia called DBpedia, which is interlinked with a large
amount of the LOD cloud [5]. In 2013 it contained 3.8 mil-
lion concepts – 62 percent of them being classified based on
an ontology [7]. Some authors have already discussed the
potential use of LOD in the context of supply chain man-
agement. While Hofman et al. were more concerned with
Linked Data in the supply chain itself [12, 11], Hulstijn et
al. saw it as a mean for data publication [13]. Thöni [21]
presented LOD as an option of Supply Chain Risk Manage-
ment (SCRM) with regard to social sustainability. The ideas
presented here go in line with Hofman who first suggested
LOD in the context of SCRM – here a particular use-case
based on geographical supplier data is proposed.

The combination of spatial data and LOD allows to facil-
itate the development of applications with local or global
geographic perspective. From recommendation systems to
event-visualization, the opportunities of the application ar-
eas are versatile, e.g., Sakaki et al. [18] exploited tweets
to detect center and trajectory of events and developed a
reporting system for earthquakes.

In our study, we aim to demonstrate the potential of user-
generated information and LOD being used together in a
business scenario, to identify locations of factories and assess
associated risk factors. While many studies focused on the
development of technical methods of location extraction, our
goal is to demonstrate the applicability of such methods in a
business scenario using a case study relying on a real-world
data sample.

3. DATA SAMPLE
As a first step to increase the transparency in their supply
chains, several multi-national companies recently published
supplier lists on their websites, including the names of the
factories and suppliers from which they are sourcing prod-
ucts or components. As a basis for our studies we used
information about suppliers retrieved from the websites of
four international companies from different industries.

Given that we rely on user-generated data to gain knowledge
about suppliers and factories, we chose to focus our experi-
ments on a region with high social media usage and a high
occurrence of factories supplying the international market.
Indonesia accounts for the third largest number of Twitter
users (over 50 million users) [16] with Jakarta being the city
where most tweets originate from [15] globally. With 54
million Facebook users, Indonesia ranks number four in the
absolute number of Facebook users. [1] Hence, we identified
Indonesia as an appropriate candidate for our studies due
to its position as a country with a high social media pene-
tration as well as an important status as a sourcing country
for various products. To this end, from all retrieved records,
we selected those located in Indonesia, resulting in a list of
163 factories including factory names and location informa-
tion. While in 102 of 163 cases location information included
the complete addresses, in the remaining 61 records only the
name of the city was given. We detected 16 duplicate entries
resulting from factories supplying several of the four initial
companies. Furthermore, we deleted 7 entries where several
buildings of the same factory with the same address were

stated as separate factories. For the factories with missing
address information we added address information manually
as found in online address directories or on the factories’
websites. The resulting data sample consists of 139 unique
factories defined by their names and addresses.

4. LOCATION RETRIEVAL
In this section, we present two different ways to infer loca-
tion information. First, we present the traditional way of us-
ing geocoding services to decode addresses into geographic
coordinates. Second, we present a method for automated
location inference based on user-generated geographic infor-
mation retrieved from Foursquare and Wikimapia.

4.1 Location Retrieval based on Geocoding
A natural way to determine physical locations is to use ad-
dress information and transform them into geographical co-
ordinates, a process referred to as geocoding. We use the
address information contained in our data sample to query
four different geocoding interfaces:

1. nominatim.com Nominatim is the geocoding tool of
OpenStreetMap

2. developer.nokia.com Nokia HERE

3. msdn.microsoft.com Bing Maps

4. developers.google.com Google Maps

While Bing and Nominatim returned hardly any results for
our set of Indonesian addresses, the Google Maps API could
decode 10 and the interface of Nokia Here 13 addresses to
the point of a housenumber or a rooftop. The number of
results increased with addresses geocoded on a lower level
of detail, i.e., street, postal code or city. However, as streets
in Indonesia are often several kilometers long, especially in
industrial areas, we only consider information below this
level as sufficiently located. Only four factories could be
geocoded by two different services. Therefore, in total, we
could retrieve coordinates for 20 of 139 factories based on
address information. Results are outlined in Table 1.

Table 1: Locations Resulting from Geocoding
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Nokia Here 13 6 7 46 19 48 139
Bing 139 139

Google 4 6 19 78 32 139
Nominatim 1 138 139

4.2 Location Retrieval based on UGI
In a next step, we used user-generated geographic informa-
tion from two platforms to infer factory locations:

nominatim.com
developer.nokia.com
msdn.microsoft.com
developers.google.com


1. foursquare.com (FS) is a social network, where users
can “check-in” to locations called “venues” and thereby
indicate their current location and share it with friends
on FS and other social networks. If a venue does not
exist yet, users can add this venue to the directory.

2. wikimapia.org (WM) is a collaborative mapping project
aimed at marking all geographical objects in the world
and providing a useful description of them. It com-
bines an interactive web map with a wiki system.

Both platforms have in common that they encourage users
to tag places identified by geographic coordinates with la-
bels and optionally additional information, e.g. categories,
extended descriptions or pictures. Furthermore, both plat-
forms provide the opportunity to query their location database
through Web services. Given a location name and informa-
tion about the city (in FS the city name, in WM the co-
ordinates of the city) the services return a list of matching
location records.

Querying the FS API we have retrieved 766 location records
and after manual inspection we have identified 331 venues
matching to entries in our sample of 139 factories. For 122
factories we found at least one matching entry, for other
factories we found more than ten and up to 22 matching
entries and for 17 factories we did not retrieve any matching
entry (See also Figure 1).

Figure 1: Number of retrieved entries

The Wikimapia API returned over 200.000 entries for single
locations. We limited the results to the top 5 entries where
we could manually identify 94 matching entries. We could
find at least one entry for 68 out of our set of 139 facto-
ries. From both sources together, we could retrieve location
information for 136 of 139 factories.

These results suggest that UGI may contain valuable lo-
cation information for most of the factories in our sample.
However, in an environment where any user can contribute
and change information with little verification mechanisms,
obviously information credibility is a critical issue. Provided
the fact that for most of the factories we retrieve multiple dif-
ferent location results, we cannot assume to retrieve unique,
objective results from these platforms. Therefore, in order
to use this information for automated location inference, we
remain with the task to select the most credible location
record and to judge whether this entry is credible enough to
infer location information from it.

4.2.1 Credibility Assessment of UGI
The overall goal of the automated location inference pro-
cess is to determine from a list of location records the one
with the minimal geographic distance to the real factory
location given a factory name. Since the real factory lo-
cation is unknown, we have to rely on the credibility of a
record to accurately correspond to the actual factory lo-
cation. In order to assess this credibility, we make use of
three features of a location record li: (1) a label namel (2)
a category catl ∈ {0, 1} (3) the number of checkins (only
available for FS-data) checkinl. We assume that the credi-
bility for a record is high when the location label is similar
to the factory name (i.e., the Levensthein-distance between
the strings is small), when the record is tagged with the
category “Factory” or “Production”, and when it has a high
number of checkins, which means that this location has been
frequently confirmed by users.

We developed a measure of credibility (see Eq. (1)) for a
location record l = 〈name, cat{, checkin}〉, to correspond to
the queried location q = 〈name〉. Please note in Eq. (1), in
case that checkin is not set, which is the case for data from
WM, the last term (in curly brackets) will not be considered
in the equation.

Credibility(q, l) =

= wcat × catl + wdist × [1− dist(nameq, namel)]

{+wcheckin × normalize(checkinl, limitcheckin) } (1)

Weights (wdist,wcat,wcheckin): We use weights to account
for the influences of the different features to the total cred-
ibility. Note that the weights have to be chosen such that:

wdist + wcat + wcheckin = 1

We calibrated the weights based on manual inspection of the
calculation results. The weights might have to be adjusted
depending on the application scenario, in our study we used
for FS: wdist = 0.8, wcat = 0.1, wcheckin = 0.1 and for WM:
wdist = 0.8, wcat = 0.2.

Distance (dist(nameq, namel)) (see Eq. (2)): We prepro-
cessed both input parameters (clean()) by removing paren-
theses and the letters “PT” at the beginning and at the end
of a name (a task specific to Indonesian company names e.g.
PT Industry Indonesia), as well as by transforming each
string to lower case characters. Subsequently, we calculated
the Levensthein-distance (lsd()), which returns the number
of insert, delete and replace operations to transform the first
term into the second one. We divided this measure by the
length of the longer term to normalize the distance.

dist(nameq, namel) =

=
lsd(clean(nameq), clean(namel))

max(length(nameq), length(namel))
(2)

Normalization (normalize(checkinl, limitcheckin)) (see Eq.
(3)): The parameter limitcheckin introduces an upper limit

foursquare.com
wikimapia.org


to the feature checkins in order to prevent that popular pub-
lic places, like airports with millions of checkins, are assigned
a too high credibility. We set limitcheckin = 300 since the
number of checkins is below this threshold for most factories.

normalize(checkinl, limitch) =

=
min(checkinl, limitch)

limitch
(3)

Using this formula, we can obtain the location record with
the highest credibility using the following algorithm.

For each factory in our data sample:

1. Query WM / FS using the factory name and the city.

2. Calculate the Credibility for each location record in
the result.

3. Select the record with the highest credibility measure
as the best match. If the credibility value is under a
defined limit limitc, no result is returned.

4. Sort the results according to their credibility and select
those records that exceed a credibility threshold. Here,
we set a threshold of 0.7 as most records under this
threshold seemed to be too different to be considered
as credible.

The algorithm returns an inferred location for each factory in
our data set obtained by credible location records retrieved
from Wikimapia and Foursquare.

5. EVALUATION
In order to evaluate both the results from geocoding as well
as our method to infer location information from UGI, we
manually developed a ground truth data set.

5.1 Ground Truth
Since we do not possess information about the real locations
of the factories in our data sample, we manually reviewed
the results from all geocoding services, FS, and WM in or-
der to manually determine the location which seemed most
plausible as a factory’s actual location. We viewed the lo-
cations on different internet map services and determined
whether the street name is aligned with the retrieved loca-
tions. Furthermore, we analysed the locations on satellite
pictures, as factories can be easily differentiated from resi-
dential buildings by their relatively big rooftops and as they
are typically not located within residential areas, in forests,
water etc. In case of doubt, we also compared information
and pictures from factory websites to the satellite pictures.
Our confidence increased when information from multiple
independent sources pointed to the same location. If no
concrete location could be found, then this data record was
omitted from our ground truth set and therefore also from
further evaluations in the following sections.

As a result of this manual analysis process we compiled a list
where we could match 119 of the 139 factories to geographic
coordinates with very high confidence.

5.2 Location Retrieval from Wikimapia and
Foursquare

We queried the WM and the FS API using names and cities
of 119 factories and applied the algorithm described above
to the location entries retrieved by FS (766 records) and to
the top 5 results/factories returned by WM (671 records).
Next, we computed the geographic distances between the
automatically detected locations and the locations in our
ground-truth data, using the Greater Circle Distance2, a
common measure to determine the distance between two
points on a sphere.

If the retrieved location was within 1km distance of the lo-
cation stated in our ground truth data, we considered the
retrieved location as correct.

Applying the location inference algorithm to both WM and
FS showed that FS covers a bigger range of factories, but
the chance of retrieving a correct result was comparable in
both sources (with precision: 0.73 (FS) and 0.69 (WM)), for
the basic case, in which we used the manually determined
weights for the attributes checkin and category. In subse-
quent experiments we excluded these attributes from the
calculations and found that for FS information about the
number of checkins improves the result, whereas the prop-
erty category decreases the performance. For Wikimapia the
inclusion of the category feature could slightly improve the
result (See Table 2). Note that the number of retrieved re-
sults differs, as the inclusion of additional properties changes
the credibility values and we used a static value for the cred-
ibility measure to decide whether a record is included in the
result (see Section 4.2.1).

Table 2: Comparison of FS and WM results

Foursquare Wikimapia

Category X X - - X -
Checkin X - X - - -
Total queried 119 119 119 119 119 119
Total retrieved 108 107 107 114 51 58
<1km
(Correct)

79 76 86 83 35 38

>1km
(Incorrect)

29 31 21 31 16 20

Precision 0.73 0.71 0.80 0.73 0.69 0.66

5.3 Comparing User-Generated Information
to Geocoding

In the next step, we compared the location inference per-
formance from the geocoding services (Nokia Here, Google)
to the one that was found based on UGI (Foursquare, Wiki-
mapia). For each source and factory, we calculate the ge-
ographic distance between the returned location and our
ground truth data. We compute three different performance
measures, considering that results within (1) 1km (2) 5km
(3) 10km of the actual location are considered as correct.
The results are stated in Table 3. We found that for accurate
location inference with low divergence the methods based

2We used Sedgewick’s java function for the Greater
Circle Distance http://introcs.cs.princeton.edu/java/
12types/GreatCircle.java.html

http://introcs.cs.princeton.edu/java/12types/GreatCircle.java.html
http://introcs.cs.princeton.edu/java/12types/GreatCircle.java.html


on UGI performed significantly better (Precision FS: 0.73,
WM: 0.69; basic case) than the geocoding services (Nokia:
0.22, Google: 0.25). The higher divergence can be explained
by the fact that the geocoding services could only locate
few factories to a high level of detail, e.g. house numbers
(See Table 1). If we tolerate a higher divergence (<5km
or <10km), the precision of geocoding improves, such that
50% of the factories could be located within a range of 10km
compared to our ground-truth data. Which means that if
one is interested into an approximate location, the use of
geocoding services is a viable option.

The number of retrieved results differs between different
sources, while Nokia (76%) and Foursquare (91%) returned
results for most of the factories, Google (64%) and Wikimapia
(43%) returned only fewer results. Considering the absolute
number of correctly retrieved locations Foursquare clearly
reached a better result than the other three information
sources, about 73% of the factory locations could be de-
termined within 1km.

Note that we used the basic case for FS and WM for this
comparison, since we want to avoid overfitting, caused by
optimization and evaluation performed on the same data
sample. The results from the previous section however sug-
gest, that the retrieval performance of FS could be even
further improved, when the attribute category is excluded
from calculations.

Table 3: Comparison Geocoding and UGI

Nokia Google FS WM

Total queried 119 119 119 119
Total retrieved 90 76 108 51

<1km
# Correct 20 19 79 35
Precision 0.22 0.25 0.73 0.69

<5km
# Correct 51 52 91 37
Precision 0.57 0.68 0.84 0.73

<10km
# Correct 60 61 92 37
Precision 0.67 0.80 0.85 0.73

6. USE OF LOCATION INFORMATION IN
SUPPLIER RISK MANAGEMENT

After presenting how locations of supplier factories can be
automatically inferred from UGI, we show in this section
how this information can be further enriched with semantic
information to be used in a business scenario.

Knowledge about the physical locations of suppliers is an im-
portant input for multiple decisions in Supply Chain Man-
agement (SCM). Particularly risk is strongly associated with
the geographic environment a supplier is embedded in. For
example this is true for natural disasters such as earth-
quakes, hurricanes or volcanic eruptions which are generally
considered as a major source of supply chain disruptions
[25]. Given that Indonesia has around 400 volcanoes within
its border of which at least 90 are still considered active [26],
volcanic activity could pose a significant risk to supply lines
in Indonesia. Consequently, we use the exposure to volcanos
as a practical example in order to showcase how a basic nat-
ural disaster risk assessment of supplier locations could be

performed relying on UGI and semantic information.

In a first step, we used OpenStreetMap (OSM)3 to retrieve
all volcanoes within 20km of a supplier location. For the fast
retrieval of data we used the ”Overpass API”4 which is opti-
mized for OSM data consumers and querying of geospatial
data. Using the query presented in Listing 1 combined with
the factory locations obtained in the first part of this pa-
per, we found that 54 out of 139 factories are located within
20km distance of a volcano.

<osm-script>
<query into="_" type="node">
<around from="_" into="_" lat="<lat>"

lon="<lon>" radius="20000"/>
<has-kv k="natural" v="volcano"/>

</query>
<print from="_" limit="" mode="body" order="id"/>

</osm-script>

Listing 1: Volcano Overpass Query in XML Form

OSM returns the physical locations along with additional
meta attributes including the name, the elevation, and the
last eruption date. Among other information, scientists use
historic eruptions in order to predict future eruptions (e.g.,
[22]). Moreover, the date of a volcanic eruption can give
insights in whether a volcano may have caused problems
recently. While this is an important information we found
that information on the last eruption date provided by OSM
is partly incomplete.

Therefore, this paper suggests improving the data quality
available from OSM through augmenting and comparing it
with data available from LOD. Dealing again with UGI we
have to make assumptions about the credibility of the data.
Since in our perception in a crowdsourced environment a
missing update to metadata is more likely than an incorrect
information, we replace older eruption dates with the most
recent last eruption date available.

The update process takes place in multiple steps:

• First, the XML data containing the volcanos from
OpenStreetMap are loaded and parsed including the
eruption dates from OSM dOSM if available.

• Second, the eruptionYear and the lastEruption prop-
erties are loaded for all objects of the type dbpedia
-owl:Volcano that contained the volcano’s Indonesian
name in its label. The later year of the two dates was
set as the new candidate year dNCY. Listing 2 displays
the SPARQL query used.

• Third, if the date from LOD dNCY was later than the
date in OSM dOSM (if available), the new date was
chosen. In case a year could be retrieved from DBpe-
dia without an old date from OSM available, the new
information was added.

• Finally, the XML structure was accordingly updated
and saved to a file.

3http://www.openstreetmap.org
4http://wiki.openstreetmap.org/wiki/Overpass_API

http://wiki.openstreetmap.org/wiki/Overpass_API


PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbprop: <http://dbpedia.org/property/>

SELECT DISTINCT ?volcano ?eYear ?leYear
WHERE {
?volcano rdf:type dbpedia-owl:Volcano.
?volcano rdfs:label ?l.
OPTIONAL {?volcano dbpedia-owl:eruptionYear ?eYear.}
OPTIONAL {?volcano dbprop:lastEruption ?leYear.}

FILTER (REGEX(STR(?l), "[VOLCANO_NAME_HERE]", "i"))}}

Listing 2: SPARQL to query DBpedia and return
eruption dates

Altogether, 15 volcanoes have been retrieved from OSM.
For 6 of these, the year of the latest eruption was provided.
These could be complemented by two further eruption dates
from LOD and an additional record for the volcano Galung-
gung. Details can be seen in Table 4. Particularly inter-
esting is the update for the volcano “Tangkuban Perahu”
which erupted in 2013. This could be an interesting detail
for companies sourcing from the 5 factories located nearby
this active volcano.

Table 4: Year of last eruption years for 15 Indone-
sian volcanoes based on OSM and DBpedia (LOD)

Last Eruption Year

Volcano OSM LOD FINAL F
a
ct

o
ri

es
<

2
0
k
m

Gunung Ungaran 8
Tangkuban Perahu 2013 2013 5
Gunung Kiaraberes-Gagak 1939 1939 1939 7
Gunung Salak 1938 1938 1938 7
Gunung Perbakti 1699 1699 7
Gunung Telomoyo 3
Gunung Penanggungan 2
Gunung Linting 2
Gunung Ringgit 2
Gunung Pangrango 5
Gunung Merapi 2010 2011 2011 1
Gunung Merbabu 1797 1797 1797 1
Gunung Galunggung 1982 1984 1984 1
Gunung Telagabodas 1
Gunung Gede 1957 1957 1957 2

6.1 Overall Process
Figure 2 presents the steps taken in this paper in order to re-
trieve and integrating data from multiple public data sources
to increase knowledge about factory locations. First, sup-
plier data from public websites of four companies was used in
order to compile a list of 139 supplier factories. Second, lo-
cation information for these factories was inferred using UGI
retrieved by Wikimapia and Foursquare. Third, inferred lo-
cations were enriched with geographic risk information based
on data retrieved from OpenStreetMap (in our example vol-
canoes have been used). Finally, we retrieved Linked Open

Data to perform a cross validation of geographical informa-
tion and to improve the data quality.

Altogether this provides a showcase how open social and se-
mantic data can be utilized to generate business knowledge.
In our case, the use case of supplier risk evaluation was used
as it is relevant for many multinational companies.

6.2 Limitations and Future Work
We focused on Indonesian factories in this study, future work
could evaluate if similar results could be obtained using data
from other countries, since both the platforms as well as the
way how social media platforms are used differs regionally,
results might be specific to a region.

Furthermore, in order to improve the expressiveness of the
credibility measure, further features could be included. For
example, the occurrence of multiple entries with a similar
name located nearby could increase the credibility. The dis-
tance to other factories could indicate whether a geographic
point is located in an industrial area. In a more extended
version, one could also incorporate the results of geocoding
services or try to automatically detect the visual patterns of
rooftops of industrial buildings on satellite pictures.

Improved matching algorithms to retrieve volcanic meta-
data and further attributes and datasets could be explored.
Overall, the enrichment for Supply Chain Risk Management
could include additional (natural) risk factors apart from
volcanic activities.

7. CONCLUSION
In this study, we inferred location information for 139 In-
donesian factories from four different geocoding services (i.e,
Google Maps, Bing, Nokia Here, Nominatim) and two plat-
forms providing user-generated volunteered geographic in-
formation (Wikimapia, Foursquare). We evaluated the pre-
cision of retrieved locations based on a manually developed
ground truth data set and found that UGI provided more
precise and accurate information than geocoding services.
Using Foursquare we could achieve the best results retriev-
ing a location within 1km for 70% of the factories.

Our findings suggest, that the fact that local employees and
residents start collecting and contributing geographic data
can offer corporations an opportunity to possess better in-
formation about their factory locations. Especially when the
number of suppliers and sub-suppliers is high and geocod-
ing of addresses is not effective, automated location inference
from UGI can reduce a lot of manual work.

In a second step, we demonstrated how the retrieved location
information can be enriched with Linked (Open) Data to
showcase how the geographic coordinates can be translated
into insights that help in everyday Supply Chain Risk Man-
agement. For this purpose we retrieved and validated geo-
graphic data from OpenStreetMap and DBpedia and linked
it to the inferred factory locations in order to assess their
exposure to volcanoes presenting the last eruption year.

With increasing access to the internet and mobile technol-
ogy, employees local residents in traditional outsourcing coun-
tries become users of (geo)-social networks and start gener-



Figure 2: Processing and evaluation steps

ating information. Once this information can be processed
and aggregated in a meaningful way, it can be used by cor-
porations, governments or even consumers to gain better in-
formation about the physical locations of factory buildings
and their environments but potentially also about other lo-
cal aspects. In the future, we want to explore how social
networks, like Twitter, can help to monitor local events like
strikes, industry-related protests, and other sustainability
risks in real-time, providing corporations, NGOs, and gov-
ernments with an indicator for social unrest and problems
caused by environmental and social impacts of companies.
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